
Modern Security Features
for web applications

Lukas Weichselbaum
Senior Staff Information Security Engineer
Google Switzerland 🇨🇭

@we1x

2023#BelgianCyberSecurityCoalition Leuven, Belgium

lwe@google.com

Spoiler

It all starts with a header..
.. to protect sensitive
sites

XSS (strict CSP + TT)

Block 3rd party scripts
(allowlist CSP)
Note: Not intended to mitigate XSS

Insufficient isolation
issues like XSRF, XSSI,
Clickjacking XSLeaks,
Spectre, …
(Fetch Metadata,
COOP, CORP, XFO)

1. Common web security flaws
2. Web platform security features

1. Common web security flaws
2. Web platform security features

Total Google Vulnerability Reward Program payouts in 2018

XSS 35.6%

CSRF 3.2%

Clickjacking 4.2%

Other web bugs 7.8%

Non-web issues 49.1%

Mobile app vulnerabilities
Business logic (authorization)
Server / network misconfigurations

...

Confidential & Proprietary

A simplified view of web (in)security
Historically, there were three original sins of the web as an application platform:

1. (lack of) Encryption: Easy to build an application without encryption-in-transit
○ Vulnerabilities: Use of HTTP; mixed content; non-Secure cookies; PKI concerns

2. Injections: Core building blocks (HTML, URLs, JS) allow mixing code & data
○ Vulnerabilities: All possible flavors of XSS; prototype pollution

3. (lack of) Isolation: Possible to interact with arbitrary cross-origin endpoints
○ Vulnerabilities: CSRF; clickjacking; XS-Search; XS-Leaks

The bulk of web application vulnerabilities can be traced back to these problems.

Application opt-ins needed. Focus for the second half of this presentation.

Mostly solved

Injections

<?php echo $_GET["query"] ?>

foo.innerHTML = location.hash.slice(1)

1. Logged in user visits attacker's page
2. Attacker navigates user to a vulnerable URL

1. Script runs, attacker gets access to user's session

… and many other patterns

Bugs: Cross-site scripting (XSS)

https://victim.example/?query=<script src="//evil/">

Insufficient isolation

1. Logged in user visits attacker's page
2. Attacker sends cross-origin request to vulnerable URL

1. Attacker takes action on behalf of user, or infers information
about the user's data in the vulnerable app.

Bugs: Cross-site request forgery (CSRF), XS-leaks, timing, ...

<form action="/transferMoney">
<input name="recipient" value="Jim" />
<input name="amount" value="10" />

<form action="//victim.example/transferMoney">
<input name="recipient" value="Attacker" />
<input name="amount" value="∞" />

New classes of flaws related to insufficient isolation on the
web:

- Microarchitectural issues (Spectre / Meltdown)
- Advanced web APIs used by attackers
- Improved exploitation techniques

The number and severity of these flaws is growing.

Insufficient isolation

1. Common web security flaws
2. Web platform security
features

2. Injection defenses1. Isolation mechanisms

2. Injection defenses1. Isolation mechanisms

evil.example

Attacks on windows

Examples: XS-Search/Leaks, tabnabbing, login detection, Spectre

Why do we need isolation?

Open new window

evil.example victim.example

Why do we need isolation?
Attacks on resources

Examples: CSRF, XSSI, clickjacking, web timing attacks, Spectre

Request to
victim.example

(with cookies)

evil.example

Quick review: origins & sites

Cookies

Two URLs are same-origin if they share the same scheme, host and port.

https://www.google.com/foo and https://www.google.com/bar

Two URLs are same-site if they share the same scheme & registrable domain.

https://mail.google.com/ and https://photos.google.com/

Otherwise, the URLs are cross-site.

https://www.youtube.com/ and https://www.google.com/

https://www.google.com/foo
https://www.google.com/foo
https://www.google.com/bar
https://www.google.com/bar
https://www.google.com/foo
https://www.google.com/foo
https://www.google.com/foo
https://www.google.com/foo
https://www.google.com/bar
https://www.google.com/bar
https://www.google.com/bar
https://www.google.com/bar
https://www.google.com/foo
https://www.google.com/bar

Isolation for resources:
Fetch Metadata request headers

Let the server make security decisions based on the
source and context of each HTTP request.

Three new HTTP request headers sent by browsers:

Sec-Fetch-Site: Which website generated the request?
same-origin, same-site, cross-site, none

Sec-Fetch-Mode: The Request mode, denoting the type of the request
cors, no-cors, navigate, same-origin, websocket

Sec-Fetch-Dest: The request's destination, denoting where the fetched data will be used
script, audio, image, document, object,

empty, …

https://site.example
GET /foo.png
Host: site.example
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty

GET /foo.json
Host: site.example
Sec-Fetch-Site: cross-site
Sec-Fetch-Mode: no-cors
Sec-Fetch-Dest: image

fetch("https://site.example/foo.json")

https://evil.example

Fetch Metadata - Resource Isolation

Basic idea

Block cross-site requests [Sec-Fetch-Site: cross-site]

Unless:

○ It's a non state-changing [!POST] navigational request

Sec-Fetch-Mode: navigate or Sec-Fetch-Mode: nested-navigate

○ The action/servlet is whitelisted for cross-site traffic (e.g. a CORS endpoint)

● Prevents attacks based on the attacker forcing the loading of the resource in

an attacker-controlled context

Reject cross-origin requests to protect from CSRF, XSSI & other bugs
def allow_request(req):

Allow requests from browsers which don't send Fetch Metadata
if not req['sec-fetch-site']:

return True

Allow same-site and browser-initiated requests
if req['sec-fetch-site'] in ('same-origin', 'same-site', 'none'):

return True

Allow simple top-level navigations from anywhere
if req['sec-fetch-mode'] == 'navigate' and req.method == 'GET':

return True

return False

Adopting Fetch Metadata

1. Monitor: Install a module to monitor if your isolation logic
would reject any legitimate cross-site requests.

1. Review: Exempt any parts of your application which
need to be loaded by other sites from security restrictions.

1. Enforce: Switch your module to reject untrusted requests.
★ Also set a Vary: Sec-Fetch-Site, Sec-Fetch-Mode response header.

Supported by: All major browser engines.

Detailed guide at
web.dev/fetch-metadata

https://web.dev/fetch-metadata
https://web.dev/fetch-metadata

Isolation for windows:
Cross-Origin Opener Policy

Protect your windows from cross-origin tampering.

Open new window

evil.example

w = window.open(victim, "_blank")

// Send messages
w.postMessage("hello", "*")

// Count frames
alert(w.frames.length);

// Navigate to attacker's site

w.location = "//evil.example"

victim.example

Isolation: Cross-Origin Opener Policy

evil.example victim.example

Cross-Origin-Opener-Policy: same-origin

victim.example

)

Cross-Origin-Opener-Policy: same-

origin-allow-popups

or

COOP - Overview

● If the COOP is set to "same-origin", and the origins of the documents match

➡ documents can interact with each other.

● If the opener's COOP is set to "same-origin-allow-popups", and the openee's

COOP is set to "unsafe-none" (default)

➡ documents can interact with each other.

● Otherwise, if at least one of the documents sets COOP

➡ the browser will create a new browsing context group, severing the link

between the documents.

Adopting COOP

A window with a Cross-Origin-Opener-Policy will be put in a different
browsing context group from its cross-site opener:

- External documents will lose direct references to the window

Side benefit: COOP allows browsers without Site Isolation to put the document in a
separate process to protect the data from speculative execution bugs.

Further reading on Post-Spectre Web Development at w3c.github.io/webappsec-
post-spectre-webdev/#tldr

https://w3c.github.io/webappsec-post-spectre-webdev/#tldr
https://w3c.github.io/webappsec-post-spectre-webdev/#tldr

XS-Leaks Wiki
xsleaks.dev

https://xsleaks.dev/

Isolation Headers

Insufficient isolation
issues like XSRF, XSSI,
Clickjacking XSLeaks,
Spectre, …
(Fetch Metadata,
COOP, CORP, XFO)

1. Isolation mechanisms 2. Injection defenses

Injection defenses:
Trusted Types

Eliminate risky patterns from your JavaScript by
requiring typed objects in dangerous DOM APIs.

var foo = location.hash.slice(1);
document.querySelector('#foo').innerHTML = foo;

How does DOM XSS happen?

DOM XSS is a client-side XSS variant caused by the DOM API not being secure by default

○User controlled strings get converted into code

○Via dangerous DOM APIs like:

innerHTML, window.open(), ~60 other DOM APIs

Example: https://example.com/#<im g src=x onerror=alert('xss')>

The idea behind Trusted Types

Require strings for passing (HTML, URL, script URL) values to DOM sinks.
typed objects

HTML string
Script string
Script URL string

TrustedHTML
TrustedScript
TrustedScriptURL

becomes

When Trusted Types are enforced

DOM sinks reject strings

DOM sinks accept typed objects

Content-Security-Policy: require-trusted-types-for 'script'

element.innerHTML = location.hash.slice(1); // a string

element.innerHTML = aTrustedHTML; // created via a TrustedTypes policy

The idea behind Trusted Types

Creating Trusted Types

1. Create policies with validation rules

1. Use the policies to create Trusted Type objects

1. Enforce "myPolicy" by setting a Content Security Policy header
Content-Security-Policy: require-trusted-types-for 'script'

const SanitizingPolicy = TrustedTypes.createPolicy('myPolicy', {
createHTML(s: string) => myCustomSanitizer(s)

}, false);

// Calls myCustomSanitizer(foo).
const trustedHTML = SanitizingPolicy.createHTML(foo);
element.innerHTML = trustedHTML;

When Trusted Types are in reporting mode

DOM sinks accept & report strings

DOM sinks accept typed objects

Content-Security-Policy-Report-Only: require-trusted-types-for 'script'; report-uri/cspReport

element.innerHTML = location.hash.slice(1); // a string

element.innerHTML = aTrustedHTML; // created via a TrustedTypes policy

Safe rollouts due to reporting

Reduced attack surface:

The risky data flow will always be:

Simpler security reviews - dramatically minimizes the trusted codebase
Compile time & runtime security validation
No DOM XSS - if policies are secure and access restricted

→

Trusted Types Summary

Source ... Policy Trusted Type→ → → ... DOM sink→

Try Trusted Types now!
web.dev/trusted-types

https://www.web.dev/trusted-types

Injection defenses:
Content Security Policy Level 3

Mitigate XSS by introducing fine-grained controls on
script execution in your application.

CSP Basics

CSP is a strong defense-in-depth mechanism against XSS

Note: CSP is not a replacement for proper escaping or fixing bugs!

<script>
scripts get executed plugins are loaded

Developers can control which

Enabling CSP

Response Header

Two modes

Enforcement: Content-Security-Policy

Report Only: Content-Security-Policy-Report-Only

https://example.com

😨
What most people associate with a CSP
.. are allowlist (host) based CSPs, however these aren't effective in mitigating XSS

Allowlist based CSPs
Example

Advantages
✔ Blocking third-party JS [good use case for allowlist CSP]

→ E.g. Google cannot trust external JS on accounts.google.com
→ Not a markup/html injection attack scenario like classical XSS

Disadvantages
✘ Difficult to setup and maintain
→ high level of customization required
✘ In most cases not a strong mitigation against XSS

→ trivial bypasses
→ in particular if CDNs are allowlisted (they host "gadgets")
→ 'unsafe-inline' is present, etc.

✔ Solution: Set multiple independent CSPs!

Content-Security-Policy: script-srcstatic.example.com api.example.com

● >95% of the Web's whitelist-based CSP are bypassable automatically
○ Research Paper: https://ai.google/research/pubs/pub45542
○ Check yourself: http://csp-evaluator.withgoogle.com

○ The remaining 5% might be bypassable after manual review

● Example: JSONP, AngularJS, ... hosted on whitelisted domain (esp. CDNs)

● Whitelists are hard to create and maintain → breakages

Why NOT use an allowlist-based CSP
to protect against XSS?

TL;DR Don't use them for XSS mitigation! They're almost always trivially bypassable.

script-src'self' apis.google.com www.gstatic.com;

More about CSP whitelists:
ACM CCS '16, IEEE SecDev '16, AppSec EU '17, Hack in the Box '18,

https://ai.google/research/pubs/pub45542
http://csp-evaluator.withgoogle.com
https://ai.google/research/pubs/pub45542
https://ieeexplore.ieee.org/document/7839808/
https://2017.appsec.eu/presos/Developer/So%20we%20broke%20all%20CSPs...%20You%20won't%20guess%20what%20happened%20next!%20-%20Michele%20Spagnuolo%20and%20Lukas%20Weichselbaum%20-%20OWASP_AppSec-Eu_2017.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D2T2%20-%20Michele%20Spagnuolo%20&%20Lukas%20Weichselbaum%20-%20Defense-in-Depth%20Techniques%20for%20Modern%20Web%20Applications%20and%20Google%E2%80%99s%20Journey%20with%20CSP.pdf

Many allowlist CSP bypasses…
..if used for XSS mitigation. There are other use cases where an allowlist CSP is effective.

'unsafe-inline' in script-src
script-src 'self' 'unsafe-inline';

object-src 'none';

CSP-Bypass:
">'><script>alert(1337)</script>

URL scheme/wildcard in script-src

script-src 'self' https: data: *;

object-src 'none';

CSP-Bypass: ">'><script
src=data:text/javascript,alert(1337)></script

>

Missing or lax object-src

script-src 'none';

CSP-Bypass: ">'><object
type="application/x-shockw ave-flash"

data='https://ajax.googleapis.com /ajax/libs/y

ui/2.8.0r4/build/charts/assets/charts.sw f?allo

w edDom ain=\"})))}catch(e){alert(1337)}//'>

<param nam e="Allow ScriptAccess"

value="alw ays"></object>

JSONP-like endpoint in whitelist

script-src 'self' whitelisted.com;

object-src 'none';

CSP-Bypass: ">'><script
src="https://whitelisted.com/jsonp?c

allback=alert">

AngularJS library in whitelist

script-src 'self' whitelisted.com;

object-src 'none';

CSP-Bypass: "><script

src="https://whitelisted.com/angularjs/

1.1.3/angular.min.js"></script>

<div ng-app ng-csp id=p ng-

click=$event.view.alert(1337)>

Research on this topic:

CSP is Dead, Long Live CSP
On the Insecurity of Whitelists and the Future of Content Security Policy
Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, Artur Janc

ACM CCS, 2016, Vienna

https://goo.gl/VRuuF
N

https://goo.gl/VRuuFN
https://goo.gl/VRuuFN

Try the CSP Evaluator to spot
obvious gaps in your CSP

(use case: XSS mitigation)

csp-
evaluator.withgoogle.com

https://csp-evaluator.withgoogle.com
https://csp-evaluator.withgoogle.com

Better, faster, stronger: nonce-
based CSP!

Content-Security-Policy:

script-src'nonce-...' 'strict-dynamic';

object-src 'none'; base-uri 'none'

No customization required! Except for the per-
response nonce value this CSP stays the same.

Very sensitive domains with CSP Sensitive domains with CSP

Google 2019 Case Study: >60% of XSS Blocked by CSP
Not perfect, but pretty good in practice

The Idea Behind Nonce-Based CSP

When a CSP with nonces is enforced

injected script tags without a nonce will be blocked by the browser

script tags with a valid nonce will execute

Content-Security-Policy: script-src 'nonce-random123'

<script>alert('xss')</script> // XSS injected by attacker - blocked by CSP

<script nonce="random123">alert('this is fine!')</script>
<script nonce="random123" src="https://my.cdn/library.js"></script>

The Problem of Nonce-Only CSP

An already trusted script cannot create new scripts without explicitly setting the nonce
attribute!

ALL <script> tags need to have the nonce attribute!
✘ Third-party scripts/widgets (You may not control all scripts!)
✘ Potentially large refactoring effort

Content-Security-Policy: script-src 'nonce-random123'

✔<script nonce="random123">

var s =
document.createElement('script')

s.src = "/path/to/script.js";

✘ document.head.appendChild(s);

</script>

Enabler: New strict-dynamic keyword

Only <script> tags in response body need the nonce attribute!
✔ Third-party scripts/widgets (You may not control all scripts!)
✔ Potentially large refactoring effort

Content-Security-Policy: script-src 'nonce-random123' 'strict-dynamic'

Wit 'strict-dynamic' an already trusted script can create new scripts without setting a
nonce!
✔<script nonce="random123">

var s =
document.createElement('script')

s.src = "/path/to/script.js";

✔ document.head.appendChild(s);

</script>

STEP 1: Remove CSP blockers

STEP 2: Add CSP nonces to <script> tags

STEP 3: Enforce nonce-based CSP

1..2..3 Strict CSP
How to deploy a nonce-based CSP?

A strong CSP disables common dangerous patterns
→ HTML must be refactored to not use these

javascript: URIs: a

inline event handlers: b

STEP 1: Remove CSP blockers

javascript: URIs

inline event handlers

HTML refactoring steps:

a

b
<script>document.getElementById('link')
.addEventListener('click', alert('clicked'));
</script>

STEP 1: Remove CSP blockers

a

b

nonce-only CSPs (without 'strict-dynamic') must also propagate nonces to dynamically created scripts:

Only <script> tags with a valid nonce attribute will execute!

STEP 2: Add <script> nonces

HTML refactoring: add nonce attribute to script tags
<script src="stuff.js"/></script>

<script>doSth();</script>

<script nonce="{{nonce}}" src="stuff.js"/></script>

<script nonce="{{nonce}}">doSth();</script>

<script>
var s = document.createElement('script');
s.src = 'dynamicallyLoadedScript.js';
document.body.appendChild(s);
</script>

<script nonce="{{nonce}}">
var s = document.createElement('script');
s.src = 'dynamicallyLoadedScript.js';
s.setAttribute('nonce', '{{nonce}}');
document.body.appendChild(s);
</script>

STEP 3: Enforce CSP
Enforce CSP by setting a Content-Security-Policy header

script-src'nonce-...' 'strict-dynamic' 'unsafe-eval';

object-src 'none'; base-uri 'none'

script-src'nonce-...' 'strict-dynamic';

object-src 'none'; base-uri 'none'

script-src'nonce-...';

object-src 'none'; base-uri 'none'

Strong

Stronger

Strongest

CSP Adoption Tips

If parts of your site use static HTML instead of templates, use CSP hashes:

Content-Security-Policy: script-src 'sha256-...' 'strict-dynamic';

For debuggability, add 'report-sample' and a report-uri:

script-src … 'report-sample'; report-uri /csp-report-collector

Production-quality policies need a few more directives & fallbacks for old browsers

script-src'nonce-...' 'strict-dynamic' https: 'unsafe-inline';

object-src 'none'; base-uri 'none'

2022 update: All modern browsers support 'strict-dynamic' (CSP3). No fallbacks
needed anymore, unless you need to support users on outdated browser versions!

Very sensitive domains Sensitive domains

CSP Coverage at Google [2019]

Currently a nonce-based CSP is enforced
on:

62% of all outgoing Google traffic
80+ Google domains (e.g. accounts.google.com)

160+ Services

Very sensitive domains Sensitive domains

CSP Coverage at Google [2023]

Currently a nonce-based CSP is enforced
on:

85% of all outgoing Google traffic
300+ Google domains (e.g. accounts.google.com)

700+ Services

+ No customization needed

+ More secure*

+ <script> tags with valid nonce
attribute allowed to execute

+ Mitigates stored/reflected XSS

<script> tags injected via XSS
(without nonce) are blocked

+ NEW in CSP3: 'strict-dynamic'

~ DOM-based XSS partially mitigated
→ combine with Trusted Types!

* https://ai.google/research/pubs/pub45542

Content-Security-Policy:

script-src'nonce-...' 'strict-dynamic';

object-src 'none'; base-uri 'none'

No customization required! Except for the
per response nonce value this CSP stays the same.

Summary: Nonce-based CSP

https://ai.google/research/pubs/pub45542

Detailed guide at
web.dev/strict-csp

https://www.web.dev/strict-csp

Injection defenses: 2023 edition

Add hardening and defense-in-depth against injections:

Hardening: Use Trusted Types to make your client-side code safe from DOM XSS. Your
JS will be safe by default; the only potential to introduce injections will be in your policy
functions, which are much smaller and easier to review.

Defense-in-depth: Use CSP3 with nonces (or hashes for static sites) - even if an
attacker finds an injection, they will not be able to execute scripts and attack users.

Together they prevent & mitigate the vast majority of XSS bugs.
[CSP and Trusted Types are enforced in >100 Google Web apps → these had no XSS in 2021]

Content-Security-Policy:

require-trusted-types-for 'script'; script-src'nonce-...'; base-uri 'none'

Recap: Web Security, 2023
EditionDefend against injections and isolate
your application from untrusted websites.

CSP3 based on script nonces
- Modify your <script> tags to include a nonce which changes on each response

Trusted Types
- Enforce type restrictions for unsafe DOM APIs, create safe types in policy functions

Fetch Metadata request headers
- Reject resource requests that come from unexpected sources
- Use the values of and request headers

Cross-Origin Opener Policy
- Protect your windows references from being abused by other websites

Content-Security-Policy: require-trusted-types-for 'script'

Content-Security-Policy: script-src'nonce-...' 'strict-dynamic'; base-uri 'none'

Cross-Origin-Opener-Policy: same-origin

Sec-Fetch-Site Sec-Fetch-Mode

CSP3 based on script nonces

Trusted Types

Fetch Metadata request headers

Cross-Origin Opener Policy

Browser Support
🤔

← Just landed in Safari 16.4 🎉

← This is (mostly) fine.
Most DOM-XSS bugs get removed by refactoring code to be TT compatible

[All]

[Partial]

[All]

[All]

It all starts with a header..
.. to protect sensitive
sites

XSS (strict CSP + TT)

Block 3rd party scripts
(allowlist CSP)
Note: Not intended to mitigate XSS

Insufficient isolation
issues like XSRF, XSSI,
Clickjacking XSLeaks,
Spectre, …
(Fetch Metadata,
COOP, CORP, XFO)

Thank you!
web.dev/strict-csp

csp-evaluator.withgoogle.com

web.dev/trusted-types
web.dev/fetch-metadata
web.dev/security-headers

Helpful resources

Lukas Weichselbaum
Senior Staff Information Security Engineer, Google

@we1x

lwe@google.com

https://web.dev/strict-csp/
https://csp-evaluator.withgoogle.com/
https://web.dev/trusted-types
https://web.dev/fetch-metadata

	Slide 1: Modern Security Features for web applications
	Slide 2
	Slide 3: 1. Common web security flaws 2. Web platform security features
	Slide 4: 1. Common web security flaws 2. Web platform security features
	Slide 5
	Slide 6: A simplified view of web (in)security
	Slide 7
	Slide 8
	Slide 9
	Slide 10: 1. Common web security flaws 2. Web platform security features
	Slide 11
	Slide 12
	Slide 13: Why do we need isolation?
	Slide 14: Why do we need isolation?
	Slide 15: Quick review: origins & sites
	Slide 16: Isolation for resources: Fetch Metadata request headers
	Slide 17
	Slide 18
	Slide 19: Fetch Metadata - Resource Isolation
	Slide 20
	Slide 21: Adopting Fetch Metadata
	Slide 22: Detailed guide at web.dev/fetch-metadata
	Slide 23: Isolation for windows: Cross-Origin Opener Policy
	Slide 24
	Slide 25: Isolation: Cross-Origin Opener Policy
	Slide 26: COOP - Overview
	Slide 27: Adopting COOP
	Slide 28: XS-Leaks Wiki xsleaks.dev
	Slide 29
	Slide 30
	Slide 31: Injection defenses: Trusted Types
	Slide 32: How does DOM XSS happen?
	Slide 33
	Slide 34: The idea behind Trusted Types
	Slide 35: The idea behind Trusted Types
	Slide 36: Creating Trusted Types
	Slide 37: Safe rollouts due to reporting
	Slide 38: Trusted Types Summary
	Slide 39: Try Trusted Types now! web.dev/trusted-types
	Slide 40: Injection defenses: Content Security Policy Level 3
	Slide 41: CSP Basics
	Slide 42: Enabling CSP
	Slide 43: What most people associate with a CSP .. are allowlist (host) based CSPs, however these aren't effective in mitigating XSS
	Slide 44: Allowlist based CSPs
	Slide 45: Why NOT use an allowlist-based CSP to protect against XSS?
	Slide 46: Many allowlist CSP bypasses…
	Slide 47
	Slide 48: Better, faster, stronger: nonce-based CSP!
	Slide 49: Google 2019 Case Study: >60% of XSS Blocked by CSP Not perfect, but pretty good in practice
	Slide 50: The Idea Behind Nonce-Based CSP
	Slide 51: The Problem of Nonce-Only CSP
	Slide 52: Enabler: New strict-dynamic keyword
	Slide 53: 1..2..3 Strict CSP
	Slide 54: STEP 1: Remove CSP blockers
	Slide 55: STEP 1: Remove CSP blockers
	Slide 56: STEP 2: Add <script> nonces
	Slide 57: STEP 3: Enforce CSP
	Slide 58: CSP Adoption Tips
	Slide 59: CSP Coverage at Google [2019]
	Slide 60: CSP Coverage at Google [2023]
	Slide 61: Summary: Nonce-based CSP
	Slide 62
	Slide 63: Injection defenses: 2023 edition
	Slide 64: Recap: Web Security, 2023 Edition
	Slide 65: CSP3 based on script nonces Modify your <script> tags to include a nonce which changes on each response Trusted Types Enforce type restrictions for unsafe DOM APIs, create safe types in policy functions
	Slide 66: CSP3 based on script nonces Trusted Types Fetch Metadata request headers Cross-Origin Opener Policy
	Slide 67
	Slide 68: Thank you!

