MANICODE

SECURE CODING EDUCATION

The OWASP Top Ten 2021-2022

OWASP Top 10 — 2021 Learning Objectives

g In this Course you will Learn:

What is OWASP — What are the OWASP Top 10 Risks
For Each of OWASP Top 10 — 2021

Key Concepts and Definition

Challenges with this Risk

Examples — Good & Bad Code in Pseudocode

Best Protection Strategies

COPYRIGHT ©2022 MANICODE SECURITY

g @manicode

Former OWASP Global Board Member

= 25+ years of software
development experience

= Author — "lron-Clad Java,

Building Secure Web Applications”

= McGraw-Hill/Oracle-Press

= OWASP Project Leader
= Cheat Sheet Series
= Java Encoder / HTML Sanitizer

= Application Security Verification Standard

COPYRIGHT ©2022 MANICODE SECURITY

ORACLE

Iron-Clad Java: Building
Secure Web Applications .

Best Practices for Secure Java Web Application
Development

Jim Manico
August Detlefsen
Conritusing Authar, Kavin Keran

Tachnicat tesor, Mition Smith
v i Pyecsiun Bacunty Pocxhas Masage, Jors

What is the OWASP Top Ten?

What is OWASP?

The Open Web Application Security Project (OWASP):
Is a web application security online community — anyone can join

Produces freely-available methods, articles, tools

Is lead by the non-profit OWASP Foundation

« Established as a 501(c) 3 is the US in 2004
« Established as OWASP Europe VZW in Belgium in 2011
« Has a number of key projects and chapters around the world

COPYRIGHT ©2022 MANICODE SECURITY

Brief History of the OWASP Top 10
Is a Flagship Project, first published in 2003

Aims to raise awareness on critical application security risks

Ranks the top 10 application security risks in its year of publication
OWASP Top 10 - 2021 is based on data from over 40 organizations
Previous editions include 2017, 2010, 2007

Is referenced in many standards, such as

- MITRE » Defense Information Systems Agency (DISA-STIG)
« PCIDSS < Federal Trade Commission (FTC)

COPYRIGHT ©2022 MANICODE SECURITY

Making the OWASP Top 10 — 2021

% Data call — Identifies 8 of the 10 risks

= Organizations asked to contribute their vulnerability data

= Web application vulnerabilities found in various processes

@ Industry survey — identifies remaining 2 of the 10
= Allows information security practitioners in the front lines to vote

= Catches highest risks that might not be represented in the data

COPYRIGHT ©2022 MANICODE SECURITY

OWASP Top Ten
2021

A1: Broken A2:
Access Cryptographic A3: Injection
Control Failures

AA4: Insecure
Design

A8: Software
and Data
Integrity
Failure

Configuration and Outdated Authentication

A5: Security ' A6: Vulnerable AT7: ldentity &
Components Failures

A9: Security
Logging and
Monitoring
Failures

A10: Server
Side Request
Forgery

COPYRIGHT ©2022 MANICODE SECURITY

Learning the OWASP Top 10 — 2021

Key Concepts — Information security terms you need to know

« Definition — The definition using the concepts previously introduced

« Challenges — The root causes behind this risk

« Example — Pseudocode of good example and bad example

« Best Protection Strategies — How to best prevent this risk

COPYRIGHT ©2022 MANICODE SECURITY

Here are our recommendations for when it is appropriate to use the OWASP Top 10:

Use Case OWASP Top 10 2021 OWASP Application Security Verification Standard
Awareness Yes

Training Entry level Comprehensive
Design and architecture Occasionally Yes
Coding standard Bare minimum Yes
Secure Code review Bare minimum Yes

Peer review checklist Bare minimum Yes

Unit testing Occasionally Yes
Integration testing Occasionally Yes
Penetration testing Bare minimum Yes

Tool support Bare minimum Yes
Secure Supply Chain Occasionally Yes

COPYRIGHT ©2022 MANICODE SECURITY

A1: Broken Access Control

COPYRIGHT ©2022 MANICODE SECURITY

A01:2021-Broken Access Control moves
up from the fifth position; 94% of applications
were tested for some form of broken access
control. The 34 Common Weakness
Enumerations (CWEs) mapped to Broken
Access Control had more occurrences in
applications than any other category.

https://owasp.org/www-project-top-ten/

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/www-project-top-ten/

2 Key Concepts for
A01:2021 — Broken Access Control

Access Control
« Selectively restricting access

» Features or data require permission to access

Authorization

 Permission to access certain features or data is called authorization

COPYRIGHT ©2022 MANICODE SECURITY

Definition
A01:2021 — Broken Access Control

« Users of the application can operate outside their defined
permissions

« This typically leads to unauthorized information or features
being processed

« Violation of the principle of least privilege or least authority

COPYRIGHT ©2022 MANICODE SECURITY

Example A01:2021 — Broken Access Control

adminReport (param) {
if (user.isRole("USER"), param)

{

//execute admin activity on param

}
}

adminReport (param) {
if (user.isAuthorized("ADMIN"), param)

{

//execute admin activity on param

}

- Good code - Bad code - User defined input

COPYRIGHT ©2022 MANICODE SECURITY

Indirect Object References (IDOR)
Horizontal Access Control

Example Feature
https://mail.example.com/message/2356342

This SQL would be vulnerable to tampering
select id,data from messages where messageid = 2356342

Ensure the owner is referenced in the query!
select id,data from messages m where m.id = :one AND (m.owner _id =
:two or m.recipient_id = :two)

:one = 2356342
‘two = <userid_from_session_or_jwt>

COPYRIGHT ©2022 MANICODE SECURITY

Broken Access Control Challenges

="Access Control is difficult to test from
automated tools. Your scanning tools are
rarely aware of your custom access
control policies.

=" Access Control is difficult for developers
to build. Our frameworks rarely provide
detailed access control functionality.

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies
A01:2021 — Broken Access Control

Design access control so all requests must be authorized

Enforce access by activity and only for valid workflow paths,
never by role

Build a centralized access control mechanism
Assign permissions to users in the context of data

Refuse access by default, fail securely

COPYRIGHT ©2022 MANICODE SECURITY

Best Practice: Code to the Activity (or Permission)

& - C [view-source]

if (user.hasAccess(Feature.ARTICLE EDIT))
{

//execute activity

}

Code it once, never needs to change again
Implies policy is centralized in some way

Implies policy is persisted in some way

Requires more design/work up front to get right

COPYRIGHT ©2022 MANICODE SECURITY

Access Control Key Concepts |

= Enforce access control by an activity or feature, not
the role

" Implement data-contextual access control to assign
permissions to application users in the context of
specific data items for horizontal access control
requirements

= Build a centralized access control mechanism

" Design access control so all requests must be
authorized

COPYRIGHT ©2022 MANICODE SECURITY

Access Control Key Concepts |l

®" Deny by default, fail securely

" Server-side trusted data should drive access control
policy decisions

" Be able to change a users entitlements in real time
= Build grouping capability for users and permissions

= Build admin screens first to manage access control
policy data

COPYRIGHT ©2022 MANICODE SECURITY

ASVS 4.0.3 Access Control Requirements

https://qithub.com/OWASP/ASVS/blob/master/4.0/en/0x12-VV4-Access-Control.md

COPYRIGHT ©2022 MANICODE SECURITY

https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V4-Access-Control.md
https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V4-Access-Control.md

V4.1 General Access Control Design

Description

Verify that the application enforces access control rules on a trusted service layer, especially if

411
client-side access control is present and could be bypassed.

Verify that all user and data attributes and policy information used by access controls cannot be

4.1.2
manipulated by end users unless specifically authorized.

Verify that the principle of least privilege exists - users should only be able to access functions,
4.1.3 data files, URLs, controllers, services, and other resources, for which they possess specific
authorization. This implies protection against spoofing and elevation of privilege. (C7)

41.4 [DELETED, DUPLICATE OF 4.1.3]

4.1.5 Verify that access controls fail securely including when an exception occurs. (C10)

L1

L2

L3

https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-\VV4-Access-Control.md

COPYRIGHT ©2022 MANICODE SECURITY

CWE

602

639

285

285

https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V4-Access-Control.md

V4.2 Operation Level Access Control

Description

Verify that sensitive data and APIs are protected against Insecure Direct Object Reference (IDOR)
4.21 attacks targeting creation, reading, updating and deletion of records, such as creating or updating
someone else's record, viewing everyone's records, or deleting all records.

Verify that the application or framework enforces a strong anti-CSRF mechanism to protect
4.2.2 authenticated functionality, and effective anti-automation or anti-CSRF protects unauthenticated
functionality.

V4.3 Other Access Control Considerations

Description

Verify administrative interfaces use appropriate multi-factor authentication to prevent unauthorized
use.

4.3.1

Verify that directory browsing is disabled unless deliberately desired. Additionally, applications
4.3.2 should not allow discovery or disclosure of file or directory metadata, such as Thumbs.db,
.DS_Store, .git or .svn folders.

Verify the application has additional authorization (such as step up or adaptive authentication) for
4.3.3 lower value systems, and [or segregation of duties for high value applications to enforce anti-fraud
controls as per the risk of application and past fraud.

COPYRIGHT ©2022 MANICODE SECURITY

L1

L1

L2

L2

L3

L3

CWE

639

3562

CWE

419

548

732

="CAUTION

- Good access control is hard to add to an application late in the
lifecycle

"VERIFY

- Automated security tools are poor at verifying access control
vulnerabilities since tools are not aware of your access control policy

"GUIDANCE

- https:/Icheatsheetseries.owasp.org/cheatsheets/Authorization Chea
t Sheet.html

- http://nvipubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-
162.pdf

- https:/Igithub.com/OWASP/ASVS/blob/master/4.0/en/0x12-V4-
Access-Control.md

COPYRIGHT ©2022 MANICODE SECURITY

https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V4-Access-Control.md

Summary
A01:2021 — Broken Access Control

Concept Definition

Access Control Users of the application can operate outside their defined
* Selectively restricting access permissions
* Features or data require permission to access

This typically leads to unauthorized information being

Authorization processed

» Permission to access certain features or data is called

authorization
Violation of the principle of need to know

Example Best Protection Strategies

- Good code - Bad code - User defined input
COPYRIGHT ©2022 MANICODE SECURITY

A2: Cryptographic Failure

COPYRIGHT ©2022 MANICODE SECURITY

A02:2021-Cryptographic Failures shifts up
one position to #2, previously known as
A3:2017-Sensitive Data Exposure, which was
broad symptom rather than a root cause. The
renewed name focuses on failures related to
cryptography as it has been implicitly before.
his category often leads to sensitive data
exposure or system compromise.

https://owasp.org/www-project-top-ten/

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

https://owasp.org/www-project-top-ten/

2 Key Concepts for A02:2021 —
Cryptographic Failures

Cryptography
« The art and science of keeping messages secure

« Encryption: An algorithm for transforming messages (plaintext)
into secure messages (ciphertext), most often using a key.

Cryptanalysis
« The art and science of breaking secure messages

* Cryptology = Cryptography + Cryptanalysis

COPYRIGHT ©2022 MANICODE SECURITY

Definition A02:2021 — Cryptographic Failures

« The use of weak, deprecated or incorrect cryptographic
algorithms

e Sensitive data transmitted over a network without
cryptography

 Insecure certificates, keys and secrets

« Weak creation of random values used for keys or as
seeds

COPYRIGHT ©2022 MANICODE SECURITY

Example
A02:2021 — Cryptograpic Failures

Cipher cipher =
Cipher.getInstance("DES/CBC/NoPadding");
Cipher.getInstance("DESede/CBC/PKCS5Padding") ;
Cipher.getInstance("AES/ECB/PKCS5Padding");

Cipher cipher =
Cipher.getInstance("AES/GCM/NoPadding");

- Good code - Bad code - User defined input

COPYRIGHT ©2022 MANICODE SECURITY

Challenges
A02:2021 — Cryptographic Failures

« Crypto knowledge is a rare commodity because the
material to learn cryptography is challenging and difficult

 ltis hard to verify the level of security crypto solutions
attain

|t takes very senior and sophisticated developer resources

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A02:2021 —
Cryptographic Failures

Manage keys and secrets properly

Use up to date and strong cryptographic algorithms,
protocols and key sizes

Sensitive data requires more protection, so classify them
correctly

Instrument encryption for data at rest and in transit

Configure cryptographic protocols well

COPYRIGHT ©2022 MANICODE SECURITY

Transport Layer Protection (HTTPS)

Always Use HTTPS/TLS!
e Use TLS on all connections

* Do not tolerate plaintext communication

« Use HSTS (HTTP Strict Transport
Security) and preloading

COPYRIGHT ©2022 MANICODE SECURITY

Key Lifecycle

generation \

Key

establishment

COPYRIGHT ©2022 MANICODE SECURITY

Key
backup

N,

[

o X

Key

ey
archival

orage
\’ Key usage

destruction

Secrets Management

® Private key is stored in
the local key database for
signature signing only

= Key is not extractable

~
Private RSA512
Key

" Input is the raw data to
sign

® RSA512 signature is the
output

COPYRIGHT ©2022 MANICODE SECURITY

Signature

Advanced Secrets Management

AWS KMS) Service 2 ©
Encrypts IM> Encrypts a

KMS Key) Service Key Data Key Dt
w

https://docs.microsoft.com/en-us/azure/app-service/app-
service-key-vault-references

https://code.cash.app/app-layer-encryption

https://code.cash.app/app-layer-encryption
https://docs.microsoft.com/en-us/azure/app-service/app-service-key-vault-references

Encrypting data at Rest : Google Tink

https://qithub.com/qooqle/tink

* A multi-language, cross-platform library that
provides cryptographic APls that are

secure, easy to use correctly, and hard(er)
to misuse

« Java, Android, C++, Obj-C, Go, and Python
are field tested and ready for production

* Integration with Secrets Management

COPYRIGHT ©2022 MANICODE SECURITY

https://github.com/google/tink

Encrypting data at Rest : Libsodium

https://qithub.com/jedisct1/libsodium

* A high-security, cross-platform & easy-to-
use crypto library

* Modern, easy-to-use software library for
encryption, decryption, signatures,
password hashing and more

» Supports a variety of compilers and
operating systems

COPYRIGHT ©2022 MANICODE SECURITY

https://github.com/jedisct1/libsodium

= CAUTION
- Applied cryptography is difficult

" VERIFY

- Bring in senior resources to build, procure and verify your cryptographic
implementations, especially at rest

= GUIDANCE

- https://cheatsheetseries.owasp.org/cheatsheets/Transport Layer Protection Cheat Sh
eet.html

- https://www.ssllabs.com/

- https://owasp.org/www-project-o-saft/

- https://github.com/drwetter/testssl.sh

- https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic Storage Cheat Sheet.h
tml

COPYRIGHT ©2022 MANICODE SECURITY

https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://www.ssllabs.com/
https://owasp.org/www-project-o-saft/
https://github.com/drwetter/testssl.sh
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html

Summary A02:2021 — Cryptographic Failures

Concept Definition

» Cryptography * The use of weak, deprecated or incorrect

The art and science of keeping messages secure cryptographic algorithms

* Encryption: An algorithm for transforming messages
(plaintext) into secure messages (ciphertext), most often Sensitive data transmitted over a network without
using a key. cryptography

* Cryptanalysis

The art and science of breaking secure messages Weak creation of random values used for keys or as

Cryptology = Cryptography + Cryptanalysis seeds

Example Best Protection Strategies

- Good code - Bad code - User defined input
COPYRIGHT ©2022 MANICODE SECURITY

A3: Injection
SQL Injection

COPYRIGHT ©2022 MANICODE SECURITY

A03:2021-Injection slides down to the third
position. 94% of the applications were tested for
some form of injection with a max incidence rate of
19%, an average incidence rate of 3.37%, and the
33 CWEs mapped into this category have the
second most occurrences in applications with 274k
occurrences. Cross-site Scripting is now part of this
category in this edition.

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

https://owasp.org/www-project-top-ten/

Key Concepts A03:2021 — Injection

Protocol — Set of rules for exchanging information

Protocol Encapsulation — Wrapping one set of rules into another

Example:

« Web application gives user control of database
« HTTP as a protocol encapsulates SQL with user given commands

New malicious commands are added to application hence the term
"Injection”
« Injected SQL queries will run under the context of the application account allowing
read and/or write access to application data and more

COPYRIGHT ©2022 MANICODE SECURITY

Definition A03:2021 — Injection

An instance where an attacker can supply untrusted data to a web
application that is processed by the protocol as a command or query

This changes the execution flow typically leading to:

Stealing data from databases and other data sources
Running malicious operating system commands
Abuse authentication systems

Bypass access control

Many forms of injection depending on the protocol, such as

« SQL Injection » QOperating System (O/S) Command Injection
 LDAP Injection <« Object Query Injection

COPYRIGHT ©2022 MANICODE SECURITY

SQL Injection

Applications that insert untrusted
data into database queries via
string building allows attackers to
execute arbitrary queries against
back-end databases

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SQL Injection

Injected SQL queries will run
under the context of the
application account allowing
read and/or write access to
application data and more

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Looks Legit?

Jjim'or'l'!='(@manicode.com

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

HTMLS Email Regular Expressions

The following JavaScript- and Perl-
compatible regular expression is an
Implementation of the above definition.

INa-zA-Z0-9.1#$%&™*+V/=2" " {|}~-]+@[a-zA-
70-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-
zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-
9])?)"$/

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Even Valid Data Can Cause Injection

n select id,ssn,cc,mmn from customers where
emalil='Semail’

E Semail = jim'or'l'!='@manicode.com

select id,ssn,cc,mmn from customers where
email='jim'or'l’'!="@manicode.com'

COPYRIGHT ©2022 MANICODE SECURITY

Example
A03:2021 — Injection (Classic SQL Injection)

SqlCommand objCommand = new SglCommand (
"SELECT id,name FROM user table WHERE
username = ' " & Request('"NameTextBox.Text") & " ' AND
password = ' " & Request ("PasswordTextBox.Text") &

)i

SqlCommand objCommand = new SglCommand (

"SELECT 1id,name FROM user table WHERE

Name = @Name AND Password = @Password", objConnection);
objCommand.Parameters.Add("E@Name", NameTextBox.Text);
objCommand.Parameters.Add("@Password"”", PasswordTextBox.Text);

- Good code - Bad code - User defined input

COPYRIGHT ©2022 MANICODE SECURITY

Challenges
A03:2021 — Injection

* It is hard enough getting your web application
protocols and layers to work together

* Limiting what data gets passed where is seen as an
additional step

* Injection is caused by insufficient user input
validation, escaping or parameterization

* Injection can be use to circumvent authentication,
access control and other defensive layers for data
theft.

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A03:2021 — Injection

Validate untrusted data

Encode data where necessary

Configure databases using least privilege principle
Use safe APIs for protocol queries

Sanitize data when parameterization is not available

COPYRIGHT ©2022 MANICODE SECURITY

WARNING:
Some variables cannot be parameterized

Sdbh->prepare ('SELECT name, color,
calories FROM ? WHERE calories < ?
order by ?');

COPYRIGHT ©2022 MANICODE SECURITY

= CAUTION

- One SQL Injection can lead to complete data loss so be
sure to parameterize all SQL queries

" VERIFY

- Code review and static analysis do an exellent job of
discovering SQL Injection in your code

= GUIDANCE

- https://bobby-tables.com/

- https://cheatsheetseries.owasp.org/cheatsheets/Quer
y Parameterization Cheat Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY

https://bobby-tables.com/
https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html

Summary A03:2021 — Injection

Concept Definition

» Protocol — Set of rules for exchanging information e An instance where an attacker can supply untrusted
» Protocol Encapsulation — Wrapping one set of rules into another data to a web application that is processed by the

Example: protocol as a command or query
* Web application gives user control of database : :
e HTTP as a protocol encapsulates SQL with user given commands » This changes the execution flow

New malicious commands are added to application hence the term Common Forms:
"injection* « SQL Injection — LDAP Injection
« Command Injection — Object Query Injection

Example Best Protection Strategies

- Good code - Bad code - User defined input
COPYRIGHT ©2022 MANICODE SECURITY

A3: Injection
Cross Site Scripting (XSS)

String HTML Body/Attribute HTML Entity Encode/HTML Attribute Encode
String JavaScript Variable JavaScript Hex Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, Attribute Encoding

String CSS CSS Hex Encoding

HTML Anywhere HTML Sanitization (Server and Client Side)
Any DOM Safe use of JS API's

UL An Sandboxing and Deliver from Different Origin
JavaScript y 9 9
JSON Embedded JSON Serialization/Encoding

XSS Standard Content Security Policy

DOM XSS Standard Trusted Types

COPYRIGHT ©2022 MANICODE SECURITY

A4: Insecure Design

COPYRIGHT ©2022 MANICODE SECURITY

A04:2021-Insecure Design is a new category for
2021, with a focus on risks related to design flaws.
If we genuinely want to "move left" as an industry,
we need more threat modeling, secure design

patterns and principles, and reference architectures.

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

https://owasp.org/www-project-top-ten/

3 Key Concepts for A04:2021 — Insecure Design
1. Architectural flaws

« Flaws of Omission — Ignoring a threat or security requirement

« Flaws of Commission — Bad design e.g., client-side authentication
2. Secure Design Patterns

« Examples include protocol breaks across different network zones
3. Reference Architectures

« Examples include detailed technical diagrams, zero trust user access

COPYRIGHT ©2022 MANICODE SECURITY

Definition A04:2021 — Insecure Design

Collection of security flaws that cannot be attributed to, or
fixed by implementation

Broad category — captures missing or ineffective controls
e.g.,

Architectural flaws of omission, where security requirements have not been
provided or are not been followed

Access has not been appropriately restricted

Design flaws have a different root causes to implementation
defects
Good implementation cannot fix insecure design

COPYRIGHT ©2022 MANICODE SECURITY

Example A04:2021 — Insecure Design

userAccess() {
if (user.isAuthorized(“USER"))
{
//authorize user independent of zone
}
}

userAccess() {
if (user.isConnectingFromZone(ZONE.SemiTrusted) &&

user.isAuthorized("USER"))
{

//authorize user based on 2zone

}

} - Good code - Bad code - User defined input

COPYRIGHT ©2022 MANICODE SECURITY

Challenges A04:2021 — Insecure Design

Not enough time is given to architecture and design
Architectural flaws of omission are often the cause of time constraints
There is no dedicated resource to look at and model the architectural threats

Secure design patterns are often incorrectly customized
It is hard to admit insecure design because the fix is not easy to implement
This can cause a huge waste of engineering time

Often reference architectures are not updated for latest
frameworks
Developers want to use the next cool framework or library

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies
A04:2021 — Insecure Design

Deny by principle, based on policy

Apply known reference architectures

Design using privilege separation

Generate security requirements to counter threats

Use known design patterns

Manage protocols and restrict permissions

COPYRIGHT ©2022 MANICODE SECURITY

Threat Modeling Presentations

Avi Douglen

https://securityweekly.com/shows/threat-
modeling-in-appsec-avi-douglen-asw-105,

Tony UV

https://www.youtube.com/watch?v=s21al-
jqlVM

COPYRIGHT ©2022 MANICODE SECURITY

https://securityweekly.com/shows/threat-modeling-in-appsec-avi-douglen-asw-105/
https://www.youtube.com/watch?v=s21aI-jqIVM

Summary A04:2021 — Insecure Design

Concept

Architectural flaws

Secure Design Patterns

+ Examples include protocol breaks across different

network zones

Reference Architectures

Example

- Good code - Bad code - User defined input
COPYRIGHT ©2022 MANICODE SECURITY

Definition
Collection of security flaws that cannot be attributed to,
or fixed by implementation

Broad category — captures missing or ineffective controls

Design flaws have a different root causes to
implementation defects

Best Protection Strategies

AS: Security Misconfiguration

COPYRIGHT ©2022 MANICODE SECURITY

A05:2021-Security Misconfiguration moves up
from #6 in the previous edition; 90% of applications
were tested for some form of misconfiguration, with
an average incidence rate of 4.5%, and over 208k
occurrences of CWEs mapped to this risk category.
With more shifts into highly configurable software,
it's not surprising to see this category move up. The
former category for A4:2017-XML External Entities
(XXE) is now part of this risk category.

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

https://owasp.org/www-project-top-ten/

2 Key Concepts
A05:2021 — Security Misconfiguration

1. Security Control

* An information system safeguard or countermeasure

» Designed to protect: Confidentiality, Integrity, or Availability

2. Misconfiguration that introduces common vulnerabilities
* Not performing security hardening

» Keeping default settings

Like A4:2021 Insecure Design, also a broad category

« Often referred to as the ‘catchall’ of the OWASP Top 10

COPYRIGHT ©2022 MANICODE SECURITY

Definition A05:2021 — Security Misconfiguration

Failing to implement the necessary controls to
secure the configurations of your application

Configuration puts your systems and data at risk

Vulnerabilities caused due to configuration

COPYRIGHT ©2022 MANICODE SECURITY

Example A05:2021 — Security Misconfiguration

<global-exceptions>
<exception key="global.error.invalidLogin" path=
scope="request" type="InvalidLoginException" />
</global-exceptions>

<global-forwards>
<forward name=“sign-in" path=“Sign-in.jsp" />
</global-forwards>

<global-forwards>
<forward name=“sign-in" path=“/Sign-in.jsp" />
</global-forwards>

- Good code - Bad code - User defined input
COPYRIGHT ©2022 MANICODE SECURITY

Challenges A05:2021 — Security Misconfiguration

 This topic can span anything from
password length to file permissions to
access control and more

* You need to read the manual for the
framework, deployment environment and
everything in between

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies
A05:2021 — Security Misconfiguration

Verify configurations

Assume insecure if you cannot verify

Read existing hardening and security guides
Know your frameworks and libraries

Apply security settings available to you

Study to know enough about your platforms

COPYRIGHT ©2022 MANICODE SECURITY

Know your Framework, Libraries and Production
Environment

For frameworks, libraries and production environment:
« Hardening Guide
« Security Guide
« Security Settings

« Secure Deployment

Settings can easily open up major security gaps
e.g. “‘Open” AWS S3 Buckets

COPYRIGHT ©2022 MANICODE SECURITY

b < L)) # digitalocean.com s ®@ h + O L B < 0 & wordpress.org v ® fh + ©

Register Login Q

How To Harden the Security of Your Production Django '
Project Catagories Hardening WordPress

Security Python Django Python Frameworks Getting Started
; Security in WordPress is taken very seriously,
By Ari Birnbaum Installing Bt ith th ¢ th
Published on December 9, 2020 WordPress HraswWinl iy GV System there ane
potential security issues that may arise if
The author selected the COVID-19 Relief Fund to receive a donation as part of the Write for BasicUsage some basic security precautions aren’t taken.
DOnations program. This article will go through some common bilities on Your
Administration forms of vulnerabilities, and the things you Computer

Introduction Gafiiaiania | p keep your WordPress
N i < L) & struts.apache.org s O] "] + O e

Vulnerabilities in WordPress

Developing a Django application can be a quick a dating WordP:

flexible and scalable. Django also offers a variety. . foe Reporting Security Issues
STRUTS S mApache Ukl the ultimate quick fix to

seamlessly prepare your project for production. J 1S Home = Support~ Documentation~ Contributing ~ SIERASEEE concerns. If you have specific Web Server Vulnerabilities

deployment, there are several ways to further seg erns or doubts, you should Network Vulnerabilities

breaking up your settings will allow you to easily § 8, with people whom you trust to G

env ment. Leveraging dotenv for hiding envirg

t knowledge of computer TP
ensure you don't release any details about your prifiZeithEeiGll 4 ordPress.

N # docs.microsoft.com # spring.io

Learr Q&A Code Samples Se

| Docs Docum

8 Microsoft

ASP.NET

anguages

Configuration

Version Configuration in ASP.NET Core

ASP.NET Core 5.0 v o1 021 + 62 minutes to read - €9 @ & & & @

Securing a Web Application O oo Te A

Filter by title This guide walks you through the process of creating a simple web

In this article
eV _— application with resources that are protected by Spring Security.

Configuration

Options

What You Wi" Build Spring Security

Environments (dev, stage, prod) En me

ogging ymand-fi You will build a Spring MVC application that secures the page with a

login form that is backed by a fixed list of users.

Download PDF

What You Need

ey H/¥ SSL Configuration Generator

Server Software Mozilla Configuration Environment

O Apache O MysQL O Modern Server Version 1.17.7

O AWS ALB O} nginx Services with clients that support TLS 1.3 and don't

O AWS ELB O Oracle HTTP need backward compatibility OpensSL Version 11.1d

O Caddy O Postfix @ Intermediate

O Dovecot O PostgreSQL General-purpose servers with a variety of clients, .

O Exim O ProFTPD recommended for almost all systems Mlsceuaneous

O Go O Redis O old HTTP Strict Transport Security
O HAPro O Tomcat Compatible with a number of very old clients, and — = — : :
o Jetty xy O TraEhk should be used only as a last resort This also redirects to HTTPS, if possible
O lighttpd OCSP Stapling

nginx 1.17.7, intermediate config, OpenSSL 1.1.1d

Supports Firefox 27, Android 4.4.2, Chrome 31, Edge, IE 11 on Windows 7, Java 8u31, OpenSSL 1.0.1, Opera 20, and Safari 9

generated 2021-05-12, Mozilla Guideline v5.6, nginx 1.17.7, OpenSSL 1.1.1d, intermediate configuration
https://ssl-config.mozilla.org/#server=nginx&version=1.17.7&config=intermediate&openssl=1.1.1d&guideline=5.6
server {

listen 80 default_server;

listen [::]:80 default_server;

location / {
return 301 https://$host$request_uri;

COPYRIGHT ©2022 MANICODE SECURITY

@ Qua Iys, SSL Labs Home Projects Qualys Free Trial Contact

You are here: Home > Projects > SSL Server Test > manicode.com

SSL Report: manicode.com (198.199.114.91)

Assessed on: Tue, 11 May 2021 20:29:16 UTC | Hide | Clear cache Scan Another »

Summary

Overall Rating

Certificate

I Protocol Support

Key Exchange

Cipher Strength

Visit our documentation page for more information, configuration guides, and books. Known issues are documented here.

This site works only in browsers with SNI support.

COPYRIGHT ©2022 MANICODE SECURITY

XML EXTERNAL ENTITY PROCESSING

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/passwd" >
1>
<foo>&xxe;</foo>

Configure all of your XML parsers to disable external entity resolution!

https://cheatsheetseries.owasp.org/cheatsheets/ XML External Entity Preven
tion Cheat Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY

https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html

= CAUTION

- This is a huge category that involves everywhere from the
OS to the Framework to the App Server and more

" VERIFY

If you can’t verify the config assume it's not secure

= GUIDANCE

- Learn the proper settings and read the manual for
security configuration needs

- Cloud configuration is especially important and requires
proper platform knowledge

COPYRIGHT ©2022 MANICODE SECURITY m

Summary A05:2021 — Security Misconfiguration

Concept

Security Control

* An information system safeguard or countermeasure

» Designed to protect: Confidentiality, Integrity, or
Availability

Misconfiguration that introduces common vulnerabilities

* Not performing security hardening

* Keeping default settings

Often referred to as the ‘catchall’ of the OWASP Top 10

Example

- Good code - Bad code - User defined input
COPYRIGHT ©2022 MANICODE SECURITY

Definition
Failing to implement the necessary controls to secure the
configurations of your application

Configuration puts your systems and data at risk

Vulnerabilities caused due to configuration

Best Protection Strategies

A6: Vulnerable and Outdated
Components

COPYRIGHT ©2022 MANICODE SECURITY

A06:2021-Vulnerable and Outdated Components
was previously titled Using Components with
Known Vulnerabilities and is #2 in the Top 10
community survey, but also had enough data to
make the Top 10 via data analysis. This category
moves up from #9 in 2017 and is a known issue that
we struggle to test and assess risk.

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

https://owasp.org/www-project-top-ten/

3 Key Concepts for A06:2021 — Vulnerable and
Outdated Components

1. Software often has

« Past vulnerable versions using outdated components

2. Systems and frameworks have a date by when

« End of life, end of sale, unsupported

3. Attackers attempt to exploit newly published vulnerabilities

« Requiring you apply fixes or perform updates

COPYRIGHT ©2022 MANICODE SECURITY

Definition A06:2021 — Vulnerable and Outdated
Components

Having in use software components that are
vulnerable, unsupported, or out of date

Environments that are not patched in a timely
manner

Not knowing the versions of software, you use

COPYRIGHT ©2022 MANICODE SECURITY

Challenges A06:2021 — Vulnerable and Outdated
Components

« Patching is a monthly, quarterly, or
undefined task, leaving organizations
exposed to known vulnerabilities

* Ensuring 3rd party libraries are up to date is
often neglected as a process due to time
and similar constraints

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A06:2021 — Vulnerable
and Outdated Components

Check continuously that your libraries are updated and
then actually keep them updated

Only obtain components from official trusted sources
Remove unused dependencies

Use only features that are necessary

Stay current with latest vulnerabilities

COPYRIGHT ©2022 MANICODE SECURITY

Third Party Library Security in the NVD Database
NIST

Information Technology Laboratory

NATIONAL VULNERABILITY DATABASE

VULNERABILITIES

AXCVE-2021-29447 Detail

Current Description

Wordpress is an open source CMS. A user with the ability to upload files (like an Author) can exploit an XML parsing issue in the Media Library
leading to XXE attacks. This requires WordPress installation to be using PHP 8. Access to internal files is possible in a successful XXE attack.
This has been patched in WordPress version 5.7.1, along with the older affected versions via a minor release. We strongly recommend you
keep auto-updates enabled.

COPYRIGHT ©2022 MANICODE SECURITY

Security advisories

Drupal core Contributed projects Public service announcements

Drupal core - Critical - Third-party libraries - SA-CORE-2021-001

Project: Drupal core

Date: 2021-January-20

Security risk: * 18/25 AC:Complex/A:User/Cl:All/Il:All/E:Exploit/TD:Uncommon
Vulnerability: Third-party libraries

Description:

The Drupal project uses the pear Archive_Tar library, which has released a security update that
impacts Drupal. For more information please see:

e CVE-2020-36193
Exploits may be possible if Drupal is configured to allow .tar, .tar.gz, .bz2, or .tlz file

uploads and processes them.

Solution:
Install the latest version:

« |f you are using Drupal 9.1, update to Drupal 9.1.3.
« |f you are using Drupal 9.0, update to Drupal 9.0.11.
« If you are using Drupal 8.9, update to Drupal 8.9.13.
« |f you are using Drupal 7, update to Drupal 7.78.

Versions of Drupal 8 prior to 8.9.x are end-of-life and do not receive security coverage.

Disable uploads of .tar, .tar.gz, .bz2, or .tlz files to mitigate the vulnerability.

COPYRIGHT ©2022 MANICODE SECURITY

Contact and more information

The Drupal security team can be reached
by email at security at drupal.org or via the
contact form.

Learn more about the Drupal Security team
and their policies, writing secure code for
Drupal, and securing your site.

Follow the Drupal Security Team on Twitter
@drupalsecurity

Contributing organizations for
this advisory

Solathat

Acro Media Inc

Morris Animal Foundation

Acquia

3" Party Management Tools

OWASP dependency-check
https://owasp.org/www-project-dependency-check/

Maven Security Versions
https://github.com/victims/maven-security-versions

Retire.js (JavaScript 3'd party library analysis)
https://retirejs.qgithub.io/retire.js/

Create PR's for your dependencies automatically
https://dependabot.com/

COPYRIGHT ©2022 MANICODE SECURITY

https://owasp.org/www-project-dependency-check/
https://github.com/victims/maven-security-versions
https://retirejs.github.io/retire.js/

="CAUTION

- Virtually every application has 3 party library issues
because most development teams don’t focus on ensuring
their libraries are up to date

"VERIFY

- Use automation that checks periodically (e.g., every build
or check-in) to see if your libraries are out of date and then
actually updated them!

*GUIDANCE
- https://owasp.org/www-project-dependency-check/

COPYRIGHT ©2022 MANICODE SECURITY

https://owasp.org/www-project-dependency-check/

Summary A06:2021 —

Vulnerable and Outdated Components
Concept Definition

Software often has Having in use software components that are vulnerable,
 Past vulnerable versions using outdated components unsupported, or out of date

Systems and frameworks have a date by when

» End of life, end of sale, unsupported

Attackers attempt to exploit newly published vulnerabilities
* Requiring you apply fixes or perform updates

Environments that are not patched in a timely manner

Not knowing the versions of software you use

Example Best Protection Strategies

- Good code - Bad code - User defined input

COPYRIGHT ©2022 MANICODE SECURITY

A7: ldentification and Authentication
Failures

COPYRIGHT ©2022 MANICODE SECURITY

A07:2021-Identification and Authentication
Failures was previously Broken Authentication and
Is sliding down from the second position, and now
includes CWEs that are more related to
identification failures. This category is still an
integral part of the Top 10, but the increased
availability of standardized frameworks seems to be
helping.

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

https://owasp.org/www-project-top-ten/

3 Key Concepts for A07:2021 —
|dentification and Authentication Failures

1. Digital Identity

« Set of attributes related to a person, organization, application, or
device

2. Identification

« The act of indicating (showing) one’s identity

3. Authentication

» Process or action confirming the identity of a user

« The act of verifying (checking) one’s identity

COPYRIGHT ©2022 MANICODE SECURITY

Definition A07:2021 — Identification and
Authentication Failures
Permit attacks that disclose identity attributes

Allow for authentication controls to be subverted or
bypassed

Permit weak or misconfigured attributes (e.g., weak
passwords)

COPYRIGHT ©2022 MANICODE SECURITY

Example A07:2021 — ldentification and
Authentication Failures

if (user.equals(username)) ({
if (pass.equals(password)) {
response.set(“Invalid Password”);

} else {
response.authoriseUser (user);
}
}
if (user.equals(username) && pass.equals(password)) {
response.authoriseUser (user);

else {
response.set(“Invalid Username or Password”);

}

} - Good code - Bad code - User defined input

COPYRIGHT ©2022 MANICODE SECURITY

Challenges A07:2021 —
|dentification and Authentication Failures

* Weakest point is the point of interaction
with the user on their identity

* Many attack scenarios including credential
stuffing, brute force, session reuse attacks,
weak passwords, efc.

COPYRIGHT ©2022 MANICODE SECURITY

High Level Authentication and Session Topics

« Password Binding

 General Authentication
Rules

« Credential Storage
« Credential Recovery
* Look-up Recovery Tokens

 Qut of Band Authentication

COPYRIGHT ©2022 MANICODE SECURITY

Session Creation
Session Termination
Cookie Based Sessions
Token Based Sessions
Federated Authentication
One Time Passwords

Service Authentication

How Strong Should Your Digital Identity
Solution Be?

https://pages.nist.qov/800-63-3/sp800-63-3.html

Table 5-2 Authenticator Assurance Levels

Authenticator Assurance Level

AALI1: AALI provides some assurance that the claimant controls an authenticator registered
to the subscriber. AALI1 requires single-factor authentication using a wide range of available
authentication technologies. Successful authentication requires that the claimant prove
possession and control of the authenticator(s) through a secure authentication protocol.

AAL2: AAL2 provides high confidence that the claimant controls authenticator(s) registered
to the subscriber. Proof of possession and control of two different authentication factors is
required through a secure authentication protocol. Approved cryptographic techniques are
required at AAL2 and above.

AAL3: AAL3 provides very high confidence that the claimant controls authenticator(s)
registered to the subscriber. Authentication at AAL3 is based on proof of possession of a key
through a cryptographic protocol. AAL3 is like AAL2 but also requires a “hard”
cryptographic authenticator that provides verifier impersonation resistance.

COPYRIGHT ©2022 MANICODE SECURITY

https://pages.nist.gov/800-63-3/sp800-63-3.html

https://pages.nist.qov/800-63-3/sp800-63-3.html

() What are the risks (to the organization or the subject) of providing the digital service?

Inconvenience, distress, or damage to standing or reputation Low Moderate High
Financial loss or agency liability Low Moderate High

Harm to agency programs or public interests Low Moderate High

Unauthorized release of sensitive information Low Moderate High

Personal safety Low Moderate High

Civil or criminal violations Low Moderate High

Did you assess at moderate for any » ‘
of the remaining categories? Did you assess at high for any of the above?
Did you assess at low for harm to agency programs or moderate
public interests, unauthorized release of sensitive e
information, personal safety, or civil or criminal violations? l
) Are you making personal data accessible?
no <—L> yes
AAL 1 AALs’ @
_— - See federati
@ reoommendatg:\s.
Figure 6-2 Selecting AAL

COPYRIGHT ©2022 MANICODE SECURITY

https://pages.nist.gov/800-63-3/sp800-63-3.html

Modern Password Policy

COPYRIGHT ©2022 MANICODE SECURITY

Should we be limiting characters of a password?

" Limiting password characters to protect against
injection is doomed to failure

" Very long passwords can cause DoS
® Minimum 8 char passwords
" Must support up to 64

" No more than 128

COPYRIGHT ©2022 MANICODE SECURITY

Use a Modern Password Policy Scheme

= Consider the password policy and
MFA suggestions from the standard
NIST SP800-63b

" Do not depend on passwords as a
sole credential anytime sensitive data
IS iInvolved and use MFA

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Do not limit the character type of passwords
At least 8 characters and allow up to 64 but no more than 128

Block context-specific passwords like the username or service name

Check against a list of common passwords

Check against a list of breached password

Throttle or otherwise manage brute force attempts

Don’t force unnatural password special character rules

Don’t use password security questions or hints

No more mandatory password expiration for the sake of it

Force the use of MFA anytime sensitive data is in play

NIST Special Publication 800-63b: Digital AuthN

COPYRIGHT ©2022 MANICODE SECURITY

Password1!

COPYRIGHT ©2022 MANICODE SECURITY

Password
Storage

Configure Password Hashing Functions Correctly

= Use Argon2id with a minimum configuration of 15 MiB of
memory, an iteration count of 2, and 1 degree of parallelism

= |[f Argon2id is not available, use bcrypt with a work factor of 10
or more and with a password limit of 72 bytes

" For legacy systems using scrypt, use a minimum
CPU/memory cost parameter of (2*16), a minimum block size

of 8 (1024 bytes), and a parallelization parameter of 1

= |f FIPS-140 compliance is required, use PBKDF2 with a work
factor of 310,000 or more and set with an internal hash
function of HMAC-SHA-256

https://cheatsheetseries.owasp.org/cheatsheets/Password Storage Cheat Sheet.html

109

COPYRIGHT ©2022 MANICODE SECURITY

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

="CAUTION

- Authentication and Session Management are very complex layers of
software to both build and verify

"VERIFY

- There are many requirements to consider for Authentication and
Session Management

" GUIDANCE

- https://qgithub.com/OWASP/ASVS/blob/master/4.0/en/0x11-V2-
Authentication.md

- https://qgithub.com/OWASP/ASVS/blob/master/4.0/en/0x12-V3-Session-
management.md

- https://pages.nist.gov/800-63-3/

COPYRIGHT ©2022 MANICODE SECURITY

https://github.com/OWASP/ASVS/blob/master/4.0/en/0x11-V2-Authentication.md
https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V3-Session-management.md
https://pages.nist.gov/800-63-3/

Best Protection Strategies A07:2021 —
|dentification and Authentication Failures

Force strong credentials e.g., passwords

Ensure user registration and recovery are hardened
Manage authenticated sessions and tokens

Alert on attacks e.g., brute force

Limit failed login attempts

Enable multi-factor authentication

COPYRIGHT ©2022 MANICODE SECURITY

Summary A07:2021 —

|dentification and Authentication Failures

Concept

Digital Identity

* Set of attributes related to a person, organization,
application, or device

Identification

* The act of indicating (showing) one’s identity

Authentication

* Process or action confirming the identity of a user

* The act of verifying (checking) one’s identity

Example

- Good code - Bad code - User defined input
COPYRIGHT ©2022 MANICODE SECURITY

Definition

Permit attacks that disclosure identity attributes

Allow for authentication controls to be subverted or
bypassed

Permit weak or misconfigured attributes (e.g., weak
passwords)

Best Protection Strategies

A8: Software and Data Integrity Failures

COPYRIGHT ©2022 MANICODE SECURITY

A08:2021-Software and Data Integrity Failures is
a new category for 2021, focusing on making
assumptions related to software updates, critical
data, and CI/CD pipelines without verifying integrity.
One of the highest weighted impacts from Common
Vulnerability and Exposures/Common Vulnerability
Scoring System (CVE/CVSS) data mapped to the
10 CWEs in this category. A8:2017-Insecure
Deserialization is now a part of this larger category.

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

https://owasp.org/www-project-top-ten/

3 Key Concepts for A08:2021 Software and Data
Integrity Failures

1. Software Integrity Verification — Process of verifying the inclusion of
functionality from untrusted software sources

Applications relying on libraries, modules, resources or plugins received from untrusted
sources

Examples of untrusted sources are repositories and Content Delivery Networks (CDNs)

2. Continuous Integration (Cl) — Merging all developers’ working
software copies to a shared main instance, typically several times a
day

3. Continuous Delivery (CD) — Releasing software reliably in an
automated way without manual intervention

COPYRIGHT ©2022 MANICODE SECURITY

Definition A08:2021 Software and Data Integrity
Failures

Software code that does not prevent the inclusion of
functionality from untrusted sources

Downloading or updating source code dependencies from
software repositories without performing integrity checks

Deserializing untrusted data or applying updates to a
previously trusted application

COPYRIGHT ©2022 MANICODE SECURITY

Example A08:2021 Software and Data Integrity
Failures

Update() {
var data = download("https://manicode.com/update.sh");
exec (data);

}

Update() {
var data = download("https://manicode.com/update.sh");
verifyHash(data, "e7de35ebe643d7a$d23fd814639ac420fc2a9b6");
verifyGitContent (data);
exec (data);

}

- Good code - Bad code - User defined input

COPYRIGHT ©2022 MANICODE SECURITY

https://manicode.com/update-script
https://manicode.com/update-script

Rule of Two

Check your scripts not once ... but twice!

« Be very wary of scripts you down download and run daily
* I'm looking at you DevOps pipelines!

Solution?

* Verify once via the download hash
* Verify a second time via the published repot

COPYRIGHT ©2022 MANICODE SECURITY

Main Challenges A08:2021 Software and Data
Integrity Failures

1. Many solutions auto-update without sufficient integrity
protections without immediate solutions

« Attackers are targeting software update mechanisms and this
problem is on the rise and widespread

2. Software integrity problems are often challenging to detect

« Keeping your 3™ party components updated (A06),is a
significant challenge and is a big part of software and data
integrity protection

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A08:2021 Software and
Data Integrity Failures

Learn enough cryptography to verify integrity of
downloads

Ensure all 3 party software and frameworks are
updated

Verify software updates independently, using
cryptography

Apply and use digital sighatures

Note what software sources you trust

COPYRIGHT ©2022 MANICODE SECURITY

Summary A08:2021 Software and Data Integrity
Failures

Concept Definition

» Software Integrity Verification — Process of verifying the « Software code that does not prevent the inclusion of
inclusion of functionality from untrusted software sources functionality from untrusted sources

Applications relying on libraries, modules, resources or « Downloading or updating source code dependencies
plugins received from untrusted sources without performing integrity checks

This can happen most notably during Continuous » Deserializing untrusted data or applying updates to a
Integration (Cl) and/or Continuous Delivery (CD) previously trusted application

Example Best Protection Strategies

- Good code - Bad code - User defined input
COPYRIGHT ©2022 MANICODE SECURITY

https://manicode.com/update-script
https://manicode.com/update-script

A9: Security Logging and Monitoring
Failures

COPYRIGHT ©2022 MANICODE SECURITY

A09:2021-Security Logqging and Monitoring
Failures was previously A10:2017-Insufficient
Logging & Monitoring and is added from the Top 10
community survey (#3), moving up from #10
previously. This category is expanded to include
more types of failures, is challenging to test for, and
isn't well represented in the CVE/CVSS data.
However, failures in this category can directly
impact visibility, incident alerting, and forensics.

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

https://owasp.org/www-project-top-ten/

Why Logging?

"...the goal of logging is to be
able to alert on specific
security events...”

https://cheatsheetseries.owasp.org/cheatsheets/Application Logging V
ocabulary Cheat Sheet.html

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

https://cheatsheetseries.owasp.org/cheatsheets/Application_Logging_Vocabulary_Cheat_Sheet.html

3 Key Concepts for A09:2021 —
Security Logging and Monitoring Failures

1. Event Logging provides a standard, centralized way of recording
important software events

2. Event Monitoring is the process of collecting, analyzing and signaling
event occurrences

3. Security Logging and Monitoring focuses on events that can impact
the confidentiality, integrity or availability of software

This category is unique in that it is not a specific risk that leads to
compromised software

Aids in the accountability, visibility, incident alerting, and forensics and has wide reaching
implications to security management of software

COPYRIGHT ©2022 MANICODE SECURITY

Definition A09:2021 —
Security Logging and Monitoring Failures

Auditable events, warnings and errors are not adequately
logged

Developers and Security Staff must work together to agree on a security centric
logging standard so developers know exactly what events to log

Developers should consider logging labels specific to
security

Proper logging infrastructure is necessary in order to
securely collect and store logs long term

COPYRIGHT ©2022 MANICODE SECURITY

Example A09:2021 —
Security Logging and Monitoring Failures

if (!user.hasAccess("ADMIN ACTION")) {
//quietly deny access

}

if (!user.hasAccess("ADMIN ACTION")) {
//deny access and log
log.event (Event.SECURITY, Event.CRITICAL, "User
attempted to access admin action without permission');

}

- Good code - Bad code - User defined input
COPYRIGHT ©2022 MANICODE SECURITY

Challenges A09:2021 —
Security Logging and Monitoring Failures

« Developers are often unaware of the many security events
that need to be logged

» Appropriate alerting thresholds and response escalation processes
are not in place or effective.

» This can lead to applications that cannot detect, escalate, or alert
for attacks or suspicious activity

« Security Operations Centre (SOC) teams often do not
onboard application-level logging correctly

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A09:2021 — Security
Logging and Monitoring Failures

Build a secure logging infrastructure for collection and
storage of logs long term

Ensure all authentication and access control events,
both failed and successful, are logged

Standardize machine-readable formats for events and
alerts

Test incident response based on logging events

COPYRIGHT ©2022 MANICODE SECURITY

What To Log

= Authentication Events a
= Access Control Events 8
= Rate Limiting Events 0
= File Upload Events 0
= |nput Validation Events o

" Malicious Behavior Events =

Permission Changes
Sensitive Data Changes
Sequence Errors

Session Management Errors
System Events

User Management

https://cheatsheetseries.owasp.org/cheatsheets/Lo

qging Vocabulary Cheat Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Vocabulary_Cheat_Sheet.html

="CAUTION

- Be sure developers and security teams work together to ensure good
security logging

"VERIFY

- Verify that proper security events are getting logged and consumed
properly by your SOC teams

"GUIDANCE

- https:/Icheatsheetseries.owasp.org/cheatsheets/Application Log
ging Vocabulary Cheat Sheet.html

- https://Icheatsheetseries.owasp.org/cheatsheets/Logging Cheat
Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY

https://cheatsheetseries.owasp.org/cheatsheets/Application_Logging_Vocabulary_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

Summary A09:2021 — Security Logging and

Monitoring Failures

Concept

» Event Logging provides a standard, centralized way of
recording important software events

Event Monitoring is the process of collecting, analyzing and
signaling event occurrences

Security Logging and Monitoring focuses on events that can
impact the confidentiality, integrity or availability of software

Example

- Good code - Bad code - User defined input
COPYRIGHT ©2022 MANICODE SECURITY

Definition
» Auditable events, warnings and errors are not
adequately logged

Developers should consider logging labels specific to
security

Proper logging infrastructure is necessary here to
securely collect and store logs long term

Best Protection Strategies

A10: Server Side Request Forgery
(SSRF)

A10:2021-Server-Side Request Forgery is added
from the Top 10 community survey (#1). The data
shows a relatively low incidence rate with above
average testing coverage, along with above-
average ratings for Exploit and Impact potential.
This category represents the scenario where the
security community members are telling us this is
important, even though it's not illustrated in the data
at this time.

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

https://owasp.org/www-project-top-ten/

SSRF At GitLab

> C 0O i'TE https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22214 fr-:) .é'n % G‘ »

CVE-2021-22214 lLearn more at National Vulnerability Database (NVD)
* CVSS Severity Rating * Fix Information « Vulnerable Software Versions « SCAP Mappings « CPE Information

When requests to the internal network for webhooks are enabled, a server-side request forgery vulnerability in GitLab CE/EE
affecting all versions starting from 10.5 was possible to exploit for an unauthenticated attacker even on a GitLab instance where
registration is limited

Note: References are provided for the convenience of the reader to help distinguish between vulnerabilities. The list is not intended to be complete.

o CONFIRM:https://gitlab.com/gitlab-org/cves/-/blob/master/2021/CVE-2021-22214.json
e URL:https://gitlab.com/gitlab-org/cves/-/blob/master/2021/CVE-2021-22214.json

o MISC:https://qgitlab.com/gitlab-org/gitiab/-/issues/322926

e URL:https://gitlab.com/gitlab-org/gitlab/-/issues/322926

e MISC:https://hackerone.com/reports/1110131

o URL:https://hackerone.com/reports/1110131

Assigning CNA
GitLab Inc.

COPYRIGHT ©2022 MANICODE SECURITY 135

<ﬂ https://www.exploit-db.com/exploits/43637 *). @0 @. qh.. % {’

¢ EXPLOIT

DATABASE

Microsoft Exchange 2019 - SSRF to Arbitrary File Write (Proxylogon)
(PoC)

EDB-ID: CVE: Author: Type: Platfor Date:
49637 2021-27065 TESTANULL WEBAPPS m: 2021-03-11
2021-26855
WINDOWS

-
EDB Verified: x Exploit: £/ {}
Vulnerable App:

& @

Evnlai+ Titlar Mirnacnft+ Evrhanoa 201Q - CQCRE +a Arhitrnanuy Eila Wnita Dravag Trnann)

COPYRIGHT ©2022 MANICODE SECURITY

4 Key Concepts for A10:2021 — Server-Side
Request Forgery

1. Server-Side refers to programs and operations that run on the server

2. Request Forgery means crafting a web request that appears
legitimate, but contains malicious input

3. Cross-Site Request Forgery (CSRF) forces a user to execute
unwanted actions, while authenticated on a web application

4. One-click attack involves sending a malicious URL to an
authenticated user that executes an action they do not approve

= One-click attack resulting in the transfer of funds

COPYRIGHT ©2022 MANICODE SECURITY

Definition A10:2021 — Server-Side Request Forgery

Attack that forces a server to make a request to an
unexpected resource

Can lead to a wide variety of critical impacts
including loss of data, privilege escalation, and
more

A common vulnerability in N-tiered webservices and
microservices

COPYRIGHT ©2022 MANICODE SECURITY

Example A10:2021 — Server-Side Request Forgery

addToPage(String url) {
if (Validator.isValidURL(url)) {
return fetchContent(url);

}
}

addToPage(String url) {
if (Validator.isValidURL(url)) {
if (url.domain == "manicode.com") {
return fetchContent(url);

}
}

} - Good code - Bad code - User defined input
COPYRIGHT ©2022 MANICODE SECURITY

SSRF In The Real World
August 19

Capital One hack highlights SSRF concerns for AWS

Infosec pros warn of server-side request forgery vulnerabilities in AWS following the
Capital One data breach, which may have revealed an issue regarding the AWS
metadata service.

‘ Rob Wright Chris Kanaracus Published: 05 Aug 2019
News Director \ Senior News Writer

https://searchsecurity.techtarget.com/news/252467901/Capital-One-
hack-highlights-SSRF-concerns-for-AWS

COPYRIGHT ©2022 MANICODE SECURITY

https://searchsecurity.techtarget.com/news/252467901/Capital-One-hack-highlights-SSRF-concerns-for-AWS

1. Accessing the credentials using the SSRF bug

o The attacker seems to have accessed the AWS credentials for a role
called 1SRM-WAF-Role via the endpoint
http://169.254.169.254/1latest/meta-data/iam/security-
credentials/ISRM-WAF-Role using the SSRF bug.

For example, if the vulnerable application was at http://example.com and
the SSRF existed in a GET variable called url, then the exploitation was

possible as

curl http://example.com/?url=http://169.254.169.254/latest/meta-
data/iam/security—-credentials/ISRM-WAF-Role

https://blog.appsecco.com/an-ssrf-privileged-aws-keys-and-the-capital-one-breach-4c3c2cded3af

COPYRIGHT ©2022 MANICODE SECURITY

Challenges A10:2021 — Server-Side Request
Forgery

 Traditional code and dynamic scanning
tools struggle to find Server-Side Request
Forgery accurately

* Passing URLs and |IP addresses is very
common (e.g., for logging purposes)

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A10:2021 — Server-
Side Request Forgery

Validate origin of URLs and IPs when
parameters

Ensure authentication and access control on
APls

Setup URL encoding for untrusted parameters

Test and limit network service access with
network controls

COPYRIGHT ©2022 MANICODE SECURITY

SSRF Detailed Defense Summary

Great session management on internal/intranet APls
Great access control on internal/intranet APIs

When URL's are a parameter that the server then acts
upon do strong URL Validation

Avoid taking URLs as a full parameter that the
server then acts on

Building URLSs safely with URL Encoding of Parameters
Limit services with network controls

Microsegmentation

COPYRIGHT ©2022 MANICODE SECURITY

URLs to backend REST APIs are built with concatenation
instead of URIBuilder (Prepared URI)

* Most publically 2 e
exposed REST APIs turn % _
around and invoke _A_, g<_B_> £o _'
internal REST APIs < S
0

(

using URLConnections,
Apache HttpClient or
other REST clients. If
user input is directly
concatenated into the B new URL("https://internal/data/" + var)
URL used to make the

backend REST request

then the application

could be vulnerable to

Extended HPPP.

A var = request.getParameter("data");

COPYRIGHT ©2022 MANICODE SECURITY

https://internal/da

https://someserver/search?data=23

var = request.getParameter("data");
new URL("https://internal/data/" + var)

.1..l..[admin/report/global

https://internal/admin/report/global

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

https://internal/da
https://internal/admin/report/global

.1..l..[ladmin/report/global

%2e€%2e%2f%2e%2e%?2
f%2e%2e%21%61%64%
6d%69%6e%2f%72%65
% 70%6f%72%74%2f%6
[%6Cc%61%62%61%6cC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

new

URL("https://internal/data/" +
encodeForURIPath(var))

new

URL("https://internal?data=+
encodeForURIParam(var))

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

https://internal/da
https://internal/da

URLs to backend REST APIs are built with concatenation
instead of URIBuilder (Prepared URI)

* Most publically 2 e
exposed REST APIs turn % _
around and invoke _A_, g<_B_> £o _'
internal REST APIs < S
0

(

using URLConnections,
Apache HttpClient or
other REST clients. If
user input is directly A var = request.getParameter("data");
concatenated into the
URL used to make the
backend REST request
then the application
could be vulnerable to
Extended HPPP.

B new URL(https://internal/data/ + URLEncode(var))

COPYRIGHT ©2022 MANICODE SECURITY

https://internal/data/

Summary A10:2021 — Server-Side Request Forgery

Concept Definition

« Server-Side refers to programs and operations that run on the * Attack that forces a server to make a request to an
server unexpected resource

Request Forgery means crafting a web request that appears : ' S : :

legitimate, but contains malicious input Can lead to a wide variety of critical impacts including
loss of data, privilege escalation, and more.

Cross-Site Request Forgery (CSRF) forces a user to execute

ted acti hil thenticated b licati o . .
HIWAMISCIACons, WIS SUSNECEoE O A WERIApRICaton A common vulnerability in N-tiered webservices and

microservices

Example Best Protection Strategies

- Good code - Bad code - User defined input
COPYRIGHT ©2022 MANICODE SECURITY

Conclusion

COPYRIGHT ©2022 MANICODE SECURITY

Develop Secure Code

« Use OWASP’s Application Security Verification
Standard (ASVS) for more comprehensive secure
coding requirements

 https://lowasp.org/www-project-application-security-
verification-standard/

* Follow the guidance in OWASP’s Cheatsheet Series

* https://cheatsheetseries.owasp.org/

« Use standard security components and frameworks
that are a fit for your organization

COPYRIGHT ©2022 MANICODE SECURITY

https://owasp.org/www-project-application-security-verification-standard/
https://cheatsheetseries.owasp.org/

Test Continously For Security

 Automate as much security testing as you can.
Consider OWASP ZAP and Dependency Check.

+ https://owasp.org/www-project-zap/

» https://lowasp.org/www-project-dependency-
check/

* Review your applications manually following the
OWASP Testing Guide

» https://owasp.org/www-project-web-security-
testing-quide/

COPYRIGHT ©2022 MANICODE SECURITY

https://owasp.org/www-project-zap/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-web-security-testing-guide/

OWASP Top 10 — 2021 Key InfoSec Concepts

01 Broken Access Control

Access Control — Authorization
02 Cryptographic Failures Cryptography — Encryption — Cryptanalysis

03 Injection Protocol Encapsulation — Injecting Commands

04 Insecure Design Architectural Flaws — Secure Design Patterns

05 Security Misconfiguration Security Controls — Misconfiguration Vulnerabilities

06 Vulnerable and Outdated Components End of Life — End of Sale — Unsupported Software
07 ldentification and Authentication Failures Digital Identity — Identification

08 Software and Data Integrity Failures Software Integrity Verification — (Cl) & (CD)

09 Security Logging and Monitoring Failures Event Logging — Event Monitoring

10 Server-Side Request Forgery Request Forgery — One Clicks Attacks (CSRF)

COPYRIGHT ©2022 MANICODE SECURITY

OWASP Top 10 — 2021 Definition 1-Liners

01 Broken Access Control

Users Operate Outside Given Permissions
02 Cryptographic Failures Use of Weak or Incorrect Cryptographic Algorithms
03 Injection Run Unauthorized Protocols or Commands
04 Insecure Design Security Flaws not Fixable by Implementation
05 Security Misconfiguration Vulnerabilities Caused due to Misconfiguration
06 Vulnerable and Outdated Components Vulnerable, Unsupported or Out of Date Software
07 ldentification and Authentication Failures Permit Attacks that Disclose ldentity Attributes
08 Software and Data Integrity Failures Prevent Inclusion of Functionality from Untrusted

09 Security Logging and Monitoring Failures Events, Warnings, Errors not Adequately Logged

10 Server-Side Request Forgery Server forced to make Malicious Outbound Request

COPYRIGHT ©2022 MANICODE SECURITY

55

OWASP Top 10 — 2021 Examples (Good & Bad)

01 Broken Access Control

02 Cryptographic Failures

03 Injection

04 Insecure Design

05 Security Misconfiguration

06 Vulnerable and Outdated Components
07 Identification and Authentication Failures
08 Software and Data Integrity Failures

09 Security Logging and Monitoring Failures

10 Server-Side Request Forgery

COPYRIGHT ©2022 MANICODE SECURITY

if ()

Cipher.getInstance("

)7

.. WHERE username =

if(

<fwd name=*“signin" />

<artifactId>log4j-core</..>

A
>~

- Good code - Bad code - User defined input

OWASP Top 10 — 2021 Best Protection Strategies

01 Broken Access Control

02 Cryptographic Failures

03 Injection

04 Insecure Design

05 Security Misconfiguration

06 Vulnerable and Outdated Components
07 Identification and Authentication Failures
08 Software and Data Integrity Failures

09 Security Logging and Monitoring Failures

10 Server-Side Request Forgery

COPYRIGHT ©2022 MANICODE SECURITY

It Has Been A Pleasure!

Jim Manico
jim@manicode.com

JIM MANICO Secure Coding Instructor www.manicode.com

