
Reviewing 3rd Party
Libraries security
using scorecards

Niels Tanis
Sr. Principal Security Researcher

@nielstanis@infosec.exchange@niels.fennec.dev

• Niels Tanis
• Sr. Principal Security Researcher
• Background .NET Development,

Pentesting/ethical hacking,
and software security consultancy

• Research on static analysis for .NET apps
• Enjoying Rust!

• Microsoft MVP – Developer Technologies

Who am I?

@nielstanis@infosec.exchange@niels.fennec.dev

Modern Application Architecture
XKCD 2347

@nielstanis@infosec.exchange@niels.fennec.dev

• Risks in 3rd party NuGet Packages
• OpenSFF Scorecard
• Measure, New & Improved
• Conclusion - Q&A

Agenda

@nielstanis@infosec.exchange@niels.fennec.dev

Average codebase composition

@nielstanis@infosec.exchange@niels.fennec.dev

State of Software Security v11

”Despite this dynamic landscape,
79 percent of the time, developers
never update third-party libraries after
including them in a codebase.”

@nielstanis@infosec.exchange@niels.fennec.dev

State of Log4j – 2 years later

•Analysed our data August-November 2023
•Total set of almost 39K unique applications scanned

•2.8% run version vulnerable to Log4Shell
•3.8% run version patched but vulnerable to other CVE
•32% rely on a version that’s end-of-life and have no
support for any patches.

@nielstanis@infosec.exchange@niels.fennec.dev

Average codebase composition

@nielstanis@infosec.exchange@niels.fennec.dev

Malicious Assembly

@nielstanis@infosec.exchange@niels.fennec.dev

Malicious Package

@nielstanis@infosec.exchange@niels.fennec.dev

Hypocrite Commits

@nielstanis@infosec.exchange@niels.fennec.dev

XZ Backdoor

@nielstanis@infosec.exchange@niels.fennec.dev

Vulnerable Package

@nielstanis@infosec.exchange@niels.fennec.dev

Vulnerabilities in Libraries

@nielstanis@infosec.exchange@niels.fennec.dev

DotNet CLI

@nielstanis@infosec.exchange@niels.fennec.dev

NPM Audit

@nielstanis@infosec.exchange@niels.fennec.dev

Do you know what’s inside?

@nielstanis@infosec.exchange@niels.fennec.dev

Nutrion Label for Software?

@nielstanis@infosec.exchange@niels.fennec.dev

OpenSSF (OSSF) Scorecard

@nielstanis@infosec.exchange@niels.fennec.dev

OSSF Scorecard

@nielstanis@infosec.exchange@niels.fennec.dev

OSSF Scorecard Scoring

•Total = Σ(CheckScore × RiskWeight) / Σ(RiskWeight)
•Severity Level à RiskWeight

@nielstanis@infosec.exchange@niels.fennec.dev

• Does the project have unfixed vulnerabilities?
Uses the OSV service.

Code Vulnerabilities (High)

@nielstanis@infosec.exchange@niels.fennec.dev

•Does the project use a dependency update tool?
For example Dependabot or Renovate bot?

•Out-of-date dependencies make a project vulnerable
to known flaws and prone to attacks.

Maintenance
Dependency-Update-Tool (High)

@nielstanis@infosec.exchange@niels.fennec.dev

•Does project have published security policy?
•E.g. a file named SECURITY.md (case-insensitive) in a
few well-known directories.

•A security policy can give users information about
what constitutes a vulnerability and how to report one
securely so that information about a bug is not publicly
visible.

Maintenance
Security Policy (Medium)

@nielstanis@infosec.exchange@niels.fennec.dev

•Does project have license published?
•A license can give users information about how the
source code may or may not be used.

•The lack of a license will impede any kind of security
review or audit and creates a legal risk for potential
users.

Maintenance
License (Low)

@nielstanis@infosec.exchange@niels.fennec.dev

•OpenSSF Best Practices Badge Program
•Way for Open Source Software projects
to show that they follow best practices.

•Projects can voluntarily self-certify,
at no cost, by using this web application
to explain how they follow each best
practice.

Maintenance
CII Best Practices (Low)

@nielstanis@infosec.exchange@niels.fennec.dev

•Does the project run tests before pull requests are
merged?

•The check works by looking for a set of CI-system
names in GitHub CheckRuns and Statuses among the
recent commits (~30).

Continuous testing
CI Tests (Low)

@nielstanis@infosec.exchange@niels.fennec.dev

•This check tries to determine if the project uses
fuzzing by checking:
•Added to OSS-Fuzz project.
•If ClusterFuzzLite is deployed in the repository
•Language based property testers

Continuous testing
Fuzzing (Medium)

https://github.com/google/oss-fuzz
https://google.github.io/clusterfuzzlite/

@nielstanis@infosec.exchange@niels.fennec.dev

•This check tries to determine if the project uses Static
Application Security Testing (SAST), also known as static code
analysis. It is currently limited to repositories hosted on
GitHub.
•CodeQL
•SonarCloud
•Qodana

Continuous testing
Static Code Analysis (Medium)

@nielstanis@infosec.exchange@niels.fennec.dev

•This check determines whether the project has
generated executable (binary) artifacts in the source
repository.

•Binary artifacts cannot be reviewed, allowing possible
obsolete or maliciously subverted executables.

•There is need for reproducible builds!

Source Risk Assesement
Binary Artifacts (High)

@nielstanis@infosec.exchange@niels.fennec.dev

•This check determines whether a project's default and
release branches are protected with GitHub's branch
protection or repository rules settings.
•Requiring code review
•Prevent force push, in case of public branch all is lost!

Source Risk Assesement
Branch Protection (High)

@nielstanis@infosec.exchange@niels.fennec.dev

•This check determines whether the project's GitHub
Action workflows has dangerous code patterns.
•Untrusted Code Checkout with certain triggers
•Script Injection with Untrusted Context Variables

•https://securitylab.github.com/research/github-
actions-preventing-pwn-requests/

Source Risk Assesement
Dangerous Workflow (Critical)

https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
https://securitylab.github.com/research/github-actions-preventing-pwn-requests/

@nielstanis@infosec.exchange@niels.fennec.dev

•This check determines whether the project requires
human code review before pull requests are merged.

•The check determines whether the most recent
changes (over the last ~30 commits) have an approval
on GitHub and merger!=committer (implicit review)

Source Risk Assesement
Code Review (Low)

@nielstanis@infosec.exchange@niels.fennec.dev

•This check tries to determine if the project has recent
contributors from multiple organizations (e.g.,
companies).

•Relying on single contributor is a risk for sure!
•But is a large list of contributors good?

Source Risk Assesement
Contributors (Low)

@nielstanis@infosec.exchange@niels.fennec.dev

Source Risk Assesement
Contributors (Low)

@nielstanis@infosec.exchange@niels.fennec.dev

•Does the project pin dependencies used during its
build and release process.

•If Workflow is present what about the Actions used?

Build Risk Assesement
Pinned Dependencies (High)

@nielstanis@infosec.exchange@niels.fennec.dev

•This check determines whether the project's
automated workflows tokens follow the principle of
least privilege.

•This is important because attackers may use a
compromised token with write access to, for example,
push malicious code into the project.

Build Risk Assesement
Token Permission (High)

@nielstanis@infosec.exchange@niels.fennec.dev

•This check tries to determine if the project is
published as a package.

•Packages give users of a project an easy way to
download, install, update, and uninstall the software by
a package manager.

Build Risk Assesement
Packaging (Medium)

@nielstanis@infosec.exchange@niels.fennec.dev

•This check tries to determine if the project
cryptographically signs release artifacts.
•Signed release packages
•Signed build provenance

Build Risk Assessment
Signed Releases (High)

@nielstanis@infosec.exchange@niels.fennec.dev

Demo OpenSSF Scorecard
Fennec CLI

@nielstanis@infosec.exchange@niels.fennec.dev

Scorecard Viewer

@nielstanis@infosec.exchange@niels.fennec.dev

Scorecard Monitor

@nielstanis@infosec.exchange@niels.fennec.dev

Measure?

@nielstanis@infosec.exchange@niels.fennec.dev

OpenSSF Annual Report 2024

@nielstanis@infosec.exchange@niels.fennec.dev

SOSS & OpenSSF Scorecard

@nielstanis@infosec.exchange@niels.fennec.dev

SOSS & OpenSSF Scorecard

@nielstanis@infosec.exchange@niels.fennec.dev

Correlation between SOSS

@nielstanis@infosec.exchange@niels.fennec.dev

Github commits vs OpenSSF

@nielstanis@infosec.exchange@niels.fennec.dev

What really contributes to OSS
Security?

@nielstanis@infosec.exchange@niels.fennec.dev

What’s next?

@nielstanis@infosec.exchange@niels.fennec.dev

•Better support for recognizing fuzzing including the
managed languages like Java/.NET

•Better support for SAST tools & working with the
results.

•Reproducible builds
•What’s the library using?

What can be improved?

@nielstanis@infosec.exchange@niels.fennec.dev

Reproducible Builds

@nielstanis@infosec.exchange@niels.fennec.dev

Application Inspector

@nielstanis@infosec.exchange@niels.fennec.dev

Application Inspector

@nielstanis@infosec.exchange@niels.fennec.dev

Application Inspector

@nielstanis@infosec.exchange@niels.fennec.dev

Application Inspector

@nielstanis@infosec.exchange@niels.fennec.dev

Community Review

@nielstanis@infosec.exchange@niels.fennec.dev

OSSF Secure Supply Chain
Consumption Framework Project

•The Secure Supply Chain Consumption
Framework (S2C2F) is a security assurance and
risk reduction process that is
focused on securing how
developers consume
open source software.

@nielstanis@infosec.exchange@niels.fennec.dev

OSSF Secure Supply Chain
Consumption Framework Project

@nielstanis@infosec.exchange@niels.fennec.dev

OSSF Secure Supply Chain
Consumption Framework Project

• Level 1 – Implements foundational OSS security practices
including package caching, inventory management,
vulnerability scanning, and regular updates.

• Level 2 – Focuses on automated, rapid response capabilities to
patch OSS vulnerabilities faster than attackers can exploit
them, with improved configuration security and incident
response.

• Level 3 – Proactively analyses the most-used OSS components
for undiscovered vulnerabilities and implements malware
scanning to prevent consumption of malicious packages.

• Level 4 – Rebuilds OSS components on trusted internal
infrastructure to defend against sophisticated build-time supply
chain attacks, though this approach is difficult to implement at
scale.

@nielstanis@infosec.exchange@niels.fennec.dev

•Scorecard helps security reviewing a
3rd Party Package

•Better understand what's inside, how it’s
build/maintained and what are the risks

•Scorecard should not be a goal on its own!
•In what way can you use scorecard data?
•Look into frameworks like S2C2F to help out !

Conclusion

@nielstanis@infosec.exchange@niels.fennec.dev

•https://github.com/nielstanis/cyberseccoalition25/
•ntanis at Veracode.com
•@nielstanis@infosec.exchange
•https://www.fennec.dev

https://blog.fennec.dev

Merci! Bedankt! Thanks!

https://github.com/nielstanis/cyberseccoalition25/
https://www.fennec.dev/
https://blog.fennec.dev/

